Machine Learning

Sie befinden sich hier: :/Tag:Machine Learning
  • Classification2

Improved Activity Classification: 97.91% Accuracy

Vor einiger Zeit haben wir eine Maschine Learning Activity Classification vorgestellt, welche laufen, rennen, stillstehen und radfahren mit Hilfe einer 6DoF IMU (=3 Beschleunigungen und 3 Drehraten) erkennen kann.


Neueste Version: Mehr Daten = Besserer Algorithmus
Die neueste Version wurde mit dem PAMAP2 Dataset trainiert und es wurde eine Support Vector Machine mit Radial Kernel eingesetzt, statt bisher linearem Kernel.

Der so verbesserte Detektionsalgorithmus ermöglicht Erkennungsraten von im Schnitt 97.91%. Die Confusion Matrix ist nachfolgend abgebildet (Train/Test 80/20, Subject 106 des PAMAP2 Dataset):

Verbesserte Detektion: Verbesserte Sicherheit!
Mit dieser hohen Erkennungsrate eignet sich der Machine Learning Algorithmus noch besser, um Aktivitäten von hoch verletzlichen Verkehrsteilnehmern zu erkennen. Mit der Aktivität können Rückschlüsse auf Bewegungsgeschwindigkeiten und auch Bewegungsrichtungen gezogen werden. Eine verbesserte Vorhersage der Bewegungstrajektorien ist möglich.
Source Code
Der Code ist OpenSource auf Github zu finden (like to see the Link):

  • ActivityClassification

Motion Activity Classification with Acceleration and Rotation Sensor

A lot of devices are able to measure acceleration and rotation. For example every Smartphone is capable of this, the Tinkerforge IMU or even Sensor Tags for Car-2-X Communication, if they are equipped with such sensors. The interesting question is, how to get information out of the raw sensor data? For example Car-2-X communication: Every advanced driver assistant system (ADAS) nowadays is just able to ’see‘ a potential collision within the line of sight, like shown in this video:

If, for example, a child is crossing the street from behind a bus, the collision avoidance system of the car (camera system) is not able to ’see‘ the approaching child, because it is hidden behind the bus.
City of the Future: Smart and Connected
What if a sensor tag could broadcast the information, that somebody/something is ‚walking‘ behind the bus in direction of the street, where the car is approaching? What, if a device is estimating ‚biking’/’running‘ in direction of the car? Life-saving!

Modern Car-2-X Communication infrastructure is able to share movement information between traffic lights, cars, bikes and people in a city. If the system is able to determine the position (via GPS or sensor networks) and the direction of the movement, it is able to calculate a possible collision.
Activity Classification using Machine Learning
The hard part is to predict the kind of movement (standing, walking, running, biking), because this is an essential information for collision prevention algorithms (in the car). We have developed a real time classification algorithm, which is able to predict, whether the device is walking, running, sitting or going by bike.

 

We used sensor data of an iPhone to get data for these 4 different activities and developed a highly sophisticated classifier based on rotation rates and acceleration sensor data. The activity classification […]

By |04/2015|Categories: Allgemein|Tags: , , , |0 Comments
  • 'Ostansicht' von Stefan Eissing unter CC-BY2.0 Lizenz von flickr.com

Vorhersage der Parkhausbelegung mit Offenen Daten

Wir engagieren uns seit geraumer Zeit in der Open Knowledge Foundation, welche das Ziel verfolgt, ohnehin schon öffentliche Daten auch noch standardisiert und maschinenlesbar verfügbar zu machen, damit Mehrwert daraus generiert werden kann.

Ein schönes Beispiel für den Nutzen von Offenen Daten (Open Data) möchten wir am Beispiel der freien Parkplätze in Dresden zeigen. Die Stadt Dresden hat ein intelligentes Verkehrsleitsystem und -konzept (VAMOS), welches auch die freien Parkplätze in den jeweiligen Parkhäusern und -plätzen erfasst und bereitstellt.

Leider stehen diese Daten nicht offen – heißt: über eine Schnittstelle für jedermann – zur Verfügung. Die Open Data Aktivisten vom OKLab Dresden haben deshalb einen Scraper geschrieben, der die Zahlen von der Webseite holt und in eine Datenbank speichert sowie eine maschinenlesbare Schnittstelle zur Verfügung stellt. Erste Anwendungen auf Grund der offenen Daten sind bereits entstanden:

ParkenDD – eine Smartphone App für Android (von J. Kliemann) und iOS (von K. Költzsch)
Karte mit freien Parkplätzen Dresden

Da die Daten nun fast für ein gesamtes Jahr vorhanden sind (03/2014 – 03/2015) ist der Zeitpunkt gekommen, sich diese einmal anzusehen.

Zum einen sind statistische Aussagen interessant, zum anderen ist das Ziel ein Modell aufzustellen, welches die Belegung von innerstädtischen Parkhäusern vorhersagen kann. Wer samstags 11Uhr mit Auto zum Shopping nach Dresden kommt, der wird wissen, dass sich fast überall lange Schlangen vor den Parkhäusern bilden. Es ist für Touristen (auch aus Tschechien) also durchaus interessant, schon vorher zu wissen, wie in 1h die Belegung des angesteuerten Parkhauses ist. Dies ermöglicht intelligente Verkehrssteuerung. Man könnte sagen: Smart City!
Datenbasis: Open Data
Leider nicht von der Stadt Dresden direkt bereitgestellt, aber wenigstens von den Open Data Aktivisten aus Dresden. Ein aktueller Auszug aus der Datenbank kann hier heruntergeladen werden. Dieser bildet die Basis der nachfolgenden Visualisierungen.
Zeitreihenanalyse der Belegung
Die einfachste und logischste Analyse ist zuerst einmal die Zeitreihenanalyse. […]

By |03/2015|Categories: DataLab|Tags: , , , |0 Comments